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Tracer Dynamics in Dyson's Model of 
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We prove that the mean square displacement of a tracer particle grows as log t 
for large t. We point out a connection to the low-temperature floating phase of 
the A N N N I  model. 
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1. BROWNIAN PARTICLES INTERACTING 
THROUGH A l/x FORCE 

We consider Brownian particles in one dimension interacting through the 
pair force 1Ix. The equations of motion are 

1 
dx:(t) = i,~ : x:(t) - xi( t)  dt + dbj(t) (1.1) 

with label j = 0, _-t- 1 .... Here x:(t) ~ ~ is the position of the j t h  particle at 
time t, and {bj(t), j ~  Z} are a collection of independent standard Brownian 
motions. The pair force between particles is repulsive. The corresponding 
pair potential is - l o g  x. The particles cannot cross with probability one 
and their order is preserved in the course of time. 

Actually, the noncrossing is somewhat subtle. This can be seen already 
for two particles. Let us denote by r, >~ 0 their relative distance. By (1.1) it 
satisfies 

dr, = 1 dt + dW,  (1.2) 
?'t 
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This is the Bessel process, i.e., the radial part of the two-dimensional Brow- 
nian motion. It misses the origin with probability one, which implies that r, 
never reaches zero. 

For N particles we have to use Dyson's matrix representation(S): We 
consider N x N complex, symmetric matrices. They are determined by N 2 

real parameters. The matrix elements fluctuate according to independent 
Ornstein-Uhlenbeck processes, the diagonal elements twice as fast as the 
off-diagonal ones. This defines an N2-dimensional, nondegenerate diffusion 
process. The N eigenvalues of this fluctuating matrix satisfy (1.1) with a 
confining, harmonic external potential. The coincidence of at least two 
eigenvalues of a complex, symmetric matrix defines a surface of codimen- 
sion three in parameter space, which with probability one is never reached 
by the diffusion process. Therefore, given that initially all eigenvalues are 
distinct, they never cross. 

In the following I completely suppress the limit procedure: expec- 
tations are defined for finite N first with the subsequent limit N--+ oo. 

In Ref. 1, I investigated bulk properties of the system, in particular the 
fluctuations in the density on a large space-time scale (hydrodynamic 
limit). Having presented my results at the conference at Trebon, H. van 
Beijeren asked about the motion of a tracer particle in this system. To be 
specific: How does 

< [xj(t) - xi(0)]= > (1.3) 

behave for large t? Here the average is in the stationary process for (1.1) 
with density p. Of course, more refined information, such as 

(exp{ik[xj( t )  - xj(0)] } ) (1.3') 

is also welcome. 
From the point of view of the technique used in Ref. 1, this appears to 

be a difficult problem: only functions symmetric in the label of particles 
map onto fermionic operators. D. Diirr and S. Goldstein explained to me 
that, since "particles cannot cross, the position of the tracer particle is 
simply related to the current across the origin, which is a bulk quantity. 
Exploiting this idea, we prove that 

( [xj( t )  - xj(0)] 2) ~ (~p)-2 log t (1.4) 

for large t. 
Let us consider for a moment a general system of interacting Brow- 

nian particles in one dimension with pair force F(x)= -V ' ( x ) ,  i.e., let us 
replace in (1.1) 1/x by F(x). 
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If V is bounded, of finite range, and superstable, then 

( [x j ( t ) -  xj(0)] 2 ) ~-Dt (1.5) 

for large t with 0 < D O ~< D ~< l. The lower bound Do is the diffusion coef- 
ficient of a tracer particle in the static environment, 

dx, = -~,  V ' (x , -  xj) dt + db(t) (1.6) 
J 

The {xj} are distributed according to the Gibbs measure for V with density 
p. Explicitly, because of one dimension, Do=((e-2V(~ -1, 
V(x)=~2 V(x-x;).  In fact, exj(e-2t) converges to Brownian motion as 

~ 0.(2-4) 

If V is still of finite range, but diverges sufficiently fast at the origin 
such that particles cannot cross with probability one, then 

1 1/2 
< [xj(t) -- xj(0)] 2 ) = p- 5 Dt (1.7) 

for large t. The noncrossing of particles reduces the fluctuations in the 
motion of a tracer particle. Relation (1.7) is a consequence of Ref. 5 under 
the extra hypothesis V>/0. This will be discussed in the Remark at the end 
of Section 2. 

I conclude that the long-range repulsive part of the 1Ix force even 
further reduces the fluctuations in the motion of a tracer particle. The 1Ix 
force makes the system of Brownian particles very rigid. 

The intermediate cases are not understood. 

2. M E A N  S Q U A R E  D I S P L A C E M E N T  
OF A TRACER PARTICLE 

We pick as tracer particle the first particle to the right of the origin at 
time t = 0 .  We denote its position by x, and want to study ( (x , -xo)2) .  
Averages are always in the stationary process with density p. 

Let J(t) be the current across the origin integrated over the time inter- 
val [0, t],  t ~> 0, 

J(t) = number of particles that cross 0 from left to right 
- number of particles that cross 0 from right to left 

during time [0, t] 
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Let n(x) be the number of particles in the interval [0, x],  

[number of particles in [0, x],  x ~> 0, 
n(x) = ~ _ number of particles in Ix, 0], x < 0 

at time t = 0. The number n is increasing and takes only integer values. 
We denote by f 1 the inverse function; f - 1  o f ( x ) = x .  In particular, 

n-~ is the inverse of n that is continuous to the left (lower semicontinuous). 
A simple geometric observation together with the time-reversibility of the 
process (1.1) yields 

x , = n  '(J(t)) (2.2) 

Assuming for a moment that IJ(t)l ~ oo as t--* oo, the ergodic theorem 
suggests 

1 
x, ~ - J(t) (2.2) 

P 
and therefore 

1 
( ( x , -  xo) 2) ~ ~5 ( J(t) 2) (2.3) 

To prove (1.4) we have to establish two properties. (i) ( J ( t ) 2 ) ~  
7z 21ogt. (ii) pn-l(J(t))_~J(t)  for large t. Since n(x) and J(t) are not 
independent, this requires a little bit of work. 

L e m m a  1. We have 

1 
lim~o togtT---7 (J(t)  2 ) = 7z -2 (2.4) 

Proof. Let 

n(f, t) = ~. f (x j ( t ) )  (2.5) 
J 

and let J(f,  t ) = ~ d x f ( x ) J ( x , t ) ,  where J(x , t )  is the current across x 
integrated over the time interval 1-0, t]. Then by the conservation of the 
number of particles 

n(f, t) - n(f, O) = J( f ' ,  t) (2.6) 

Therefore 
t" 

2 J dk f (k)  #(k)[S(k, 0 ) -  S(k, t)] 

= ( In ( f ,  t ) - n ( f ,  0)]In(g,  t ) - n ( g ,  0 ) ] )  

J " = - - (  ( f  , t) J(g, t ))  (2.7) 
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Here the first identity is the definition of the dynamic structure function 
S(k, 0, (1) and the second identity uses translation invariance. We choose a 
sequence of test functions f '  and g tending to 6(x). This yields 

<J(t) 2 ) = ~  d k k - 2 [ S ( k , O ) - S ( k , t ) ]  (2.8) 

From Ref. 1, 

S(k, t )=  (2~z Ik] t) l{exp[-- t(kZ + 2rcp tkl)/2] 

- exp( - t ]k 2 - 2~p Ik] I/2)} (2.9) 

The leading contribution to (2.8) is 

-2 f2~P' dk k-1(1 - e-~Pk) ~ 7C : 1og(2~pt) (2.10) 
~0 

for large t. | 

We now want to show (2.3). Let us fix L > 0, eventually to be large. 
We define the functions 

g+j(x)=Lj+px+~, x>-O 

g - - j ( X )  ~- {0tO'[-X -- L ( j - [ -  1)] Jr- ~ x - -  L ( j A f  - 1)~ 1/2, 
O<~x<~L(j+ 1) 

L( j  + 1)~<x 

g +j(--x) = - g  +j(x) (2.11) 

j =  0, 1 ..... Actually, because the system is so rigid, x ~/2 could be replaced 
by x ~ with any 0 < ?) < 1. 

Let X be the space of locally finite configurations over N. We define 
the subsets A s ~ 3i by 

Ai= {g+j-z  <n~<g+j} 

Ao = { g  o<n~<g+o} 

A j = { g _ j < n < . g _ j _ ~ }  

(2.12) 

j = 1, 2 ..... We let )~(A) denote the indicator function of the set A. 
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Using (2.1), we obtain the bounds 

(g+l(J(t))2 Z(Ao) ) + ~ (gS~}(J(t)) 2 z(Aj) ) 
j = l  

+ ~ ~g:) l(s(~)) 2 z(A_j)) 
j = l  

(x, ~) 

= ~ (x~z(Aj)) 
j= - -oo  

<. ( g ~ ( s ( t ) )  2 Z(Ao)) + ~ (g;}_~(J(t)) 2 Z(Aj)) 
j = l  

+ ~ (g-}(J(t))  2 z(A_j))  (2.13) 
j 1 

We indicate how to estimate the contribution of the various terms. By 
H61der's inequality we decouple the average over J(t) and z(Aj). This 
results in terms of the form c o n s t - ( J ( t ) 2 )  ~, e = 0 ,  1/4, 1/2, 3/4. The 
coefficients are either bounded or can be bounded by 

(Lj)2(z({n(x) = 0 for Lxl ~< ( j +  1) L } ) )  (2.14) 
j = l  

In Lemma 2 below, we show that the sum is finite. The only error term that 
grows as log t is 

(J( t )2[1 - Z(Ao)] ) ~ (J(t)4)l/2([1 - z (A0) ] )  ~/2 (2.15) 

By a computation similar to the one in the proof of Lemma 1, only more 
lengthy, one establishes that (J(t) 4) grows as (log t) 2. Therefore, dividing 
in (2.13) by log t yields 

(p~)-2_ c(1 - Z(A0))l/~ 

1 
~< lim - -  ( x  2) 

t~ ~ log t 

<< (p~)-2 + c( 1 - Z(Ao) ) 1/2 (2.16) 

We still have to show that for L large enough: (iii) the probability to 
have [0, L ]  free of particles is small; and (iv) 3~\Ao has a small measure. 

k e m m a  2. We have 

(x( {n(x)=O forO <~ x <~ L } ) ) <<. e -~ (2.17) 
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t = O, 

Now 

Proof. 

L e m m a  3. We have for x t> x 0 > 0 

(Z({n(x) - px >~ . , ~  }) ) ~< e e x p ( - x  l/a) 

We use the exponential Chebyshev inequality, 

<z({n(x) - ; x  >>. , / s  }) > 

~< exp( - z - z/x/-s ) ( exp [ zn( x ) /x f  x ] ) 

<e "n(x) ) = det[1 + RQx(e z -  1)] <.exp[px(e z -  1)] (2.23) 

By choosing z = x  1/4, we obtain (2.21). ] 

kernma 4. We have for xo> 0 

(x({n(xo) > /L}) )  ~< cle -c2L (2.24) 

Proof. As the previous one. 

From Lemmas 2-4 together with the Borel-Cantelli Lemma we 
conclude that ( 1 - X(Ao)) tends to zero as L ~ oe. 

(2.21) 

(2.22) 

Proof. The correlation functions of the equilibrium measure, 
are of determinantal form. (1) Therefore 

{z ({n (x )=0  for 0~<x~<L})) 

k (~-L)mfL f/" L j = I  . . . . . .  =m=O m[ 3o dxl "" dxm det R(xi--  xj) 

= det(1 - QLRQD (2.18) 

as a Fredholm determinant. Here QL and R are projection operators acting 
in the Hilbert space L2(~, dx). The operator Qc projects into the interval 
[0, L]  and R projects onto the interval [ - ~ p ,  rcp] in momentum space, 
i.e., as an integral kernel 

R ( x - y ) = l  f ~p dke  i~(x-y) (2.19) 

Now, tr QLR-~ pL, and therefore 

d e t ( 1 - Q L R Q L ) < < e x p ( - t r Q L R ) = e x p ( - p L  ) | (2.20) 
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Proposition. For the stationary process (1.1) with density p we 
have 

1 
lim ~ ([xj(t)-xj(O)] 2) =(np)  2 (2.25) 

t ~ o O  

It is not known whether (log t) -1/2 J(t) has a limiting distribution as 
t --, 0% in particular, whether it tends to a Gaussian. 

Remark. Using the same technique, we want to consider the case of 
interacting Brownian particles with a finite-range potential, which, 
however, diverges sufficiently fast at the origin such that particles cannot 
cross. We first observe that 

( [n(f, t ) -n( f ,  0)32 ) = 2  f dk [f(k)12[S(k, O)-S(k, t)] (2.26) 

and therefore 

0 <<. S(k, O) - S(k, t) (2.27) 

Let n(f)= n(f, 0) and let L be the generator for the interacting Brownian 
particles. By the spectral theorem and Jensen's inequality, 

f dk I f (k ) l  2 S(k, t) 

= ( I n ( f ) -  ( n ( f ) ) ]  eLt[n(f)- ( n ( f ) ) ] )  

>~ ( [ n ( f ) -  ( n ( f ) ) ]  2 ) 

• exp { - - t ( n ( f ) I n ( f ) ) / ( I n ( f )  -- (n(f))]2) } 

= I f  dk '~C(k)12 S(k, O)] 

•  zk2 /2 / fdk l f (k ) ]  2S(k,0)} 

Therefore 

(2.28) 

S(k, O) - S(k, t) <~ S(k, 0){1 - e x p [  -tpk2/2S(k)] } (2.29) 

Now 

x/71 ( j(t)2) = 71 f dk k-2[S(k/x/t, O) - S(k/x/t, t)] (2.30) 
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For positive potentials of finite range we prove in Ref. 5 that pointwise 

lim S(k/x/-t, t) = Z exp( - k2p/2)~) (2.31 ) 
t ~ c x 3  

with z = S ( 0 , 0 )  the static compressibility. Relation (2.29) provides a 
uniform upper bound for the integrand in (2.30). Therefore 

l 
l i rn  ~ (J( t )  2) = (pz/2rc) ~/2 (2.32) 

Estimates such as those of Lemmas 2-4 are standard for Gibbs measures. 
We conclude that, if V~>0, V ( - x ) =  V(x), V three times differentiable, 
limx_o V(x)/(log Ixl)= o% and V of finite range, then 

1 2) l i ra  ~ ( [xj( t )  - xj(0)] = p-2(pz/27z)l/2 (2.33) 

I expect that the method of Ref. 5 would also allow one to show that 
el/2J(e-zt) tends to a Gaussian process as e ~ 0. 

3. S P I N - S P I N  C O R R E L A T I O N S  OF THE FLOATING 
PHASE OF THE A N N N I  M O D E L  

At a specific value of the couplings the two-dimensional ANNNI 
m o d e l h a s a z e r o - t e m p e r a t u r e p h a s e o f t h e ~ r m  

+ + + + - - - - - - + +  + 

. . . + + + + - - - - - - + +  + . - .  

+ + + + - - - - - - + 4  + 

The length of intervals with a given sign is arbitrary, but larger than or 
equal to two. As we increase the temperature slightly, a natural 
approximation is to describe the + - interfaces as random walks with the 
constraint that their distance is always larger than or equal to two. (6) As 
explained in Ref. 1 (cf. also Ref. 7), interacting Brownian motion governed 
by (1.1) is the continuum version of this model. 

Let us label the particles in (1.1) in their natural order as 

�9 - . x  ~ ( 0 ) ~ < 0 < x o ( 0 ) < x l ( 0 ) < . . -  (3 .1)  

We define the spin field or(x, t) by 

a(x, t)= { L1, 
if xj(t)<~x <xs+l(t)andjodd 
if xj(t)<~x<xj+l(t)andjeven 
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From the point of view of the ANNNI  model the object of interest is the 
spimspin correlation 

(a(x,  t) a(0, 0 ) )  (3.2) 

average in the stationary process (1.1) with density p. 
The same geometric observation as in the case of the tracer particle 

yields 

a(x, t) = exp{ iTz[n(x) + J( t ) ]  } (3.3) 

Since a(0, 0 ) =  1 by construction, 

(tr(x, t) tr(O, O)) = (exp{ iTz[n(x) + J( t ) ]  } ) (3.4) 

In the physical literature (Ref. 6 and references therein), this expectation is 
computed assuming that n(x) for large x and J(t) for large t have a 
Gaussian distribution. 

We use the conservation law (2.6) to express J(t) through the density 
field. Going through the algebra in Ref. 1 then yields 

(tr(x, t) o-(0, 0 ) )  = det[1 + (Re-t~/2Pxe'~/2P o - R)]  (3,5) 

for t >/0. Again R, A, and Px are linear operators acting on the Hilbert 
space Lz(R, dy), and A is the Laplacian. Note that Re -t~/2 is a bounded 
operator. Px is the multiplication operator 

- f ( y )  for y < x (3.6) 
Pxf (Y)  = i f ( y )  for x < y  

The operator in the parentheses is of trace class. 
I have no idea how to estimate the large-x and -t behavior of the 

determinant in (3.5). My only observation is that for t =  0 we have 

(a(x,  0) a(0, 0 ) )  = det(1 - 2 Q x R Q ~ )  (3.7) 

with Qx defined below (2.18). Since [[RQ~][ ~< 1 and since Q~RQ~ increases 
to R as x ~ 0% 2Q~RQx must have eigenvalues that cross 1 for increasing 
x. Therefore, the spin-spin correlation oscillates around zero. Using 
log I1 - 2 u l  <~ -2u(1  --u)  for 0 ~< u ~< 1, we have the upper bound 

I (~(x, o) o-(o, o))[ 

~< e x p [ -  2 tr QxR + 2 tr(QxR) z] 

~-Ixl-P (3.8) 

for large Ixl. This is believed to be the correct asymptotic behavior. 
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Remark.  Yet another  physical realization of  (1.1) is the terrace step 
kink model.  (9'1~ It describes a two-dimensional  stepped surface of  a crystal. 
At low temperatures  the steps are of  height one and well separated from 
each other. If  the surface is slightly tilted against the z axis and if the steps 
run essentially parallel to the y axis, then their locations are given by the 
lines y ---, Urn(y), Y ~ E, m = 1, 2 ..... The energy of a collection of  steps is 

H = E E [ U m ( y + l ) - u m ( y ) ] 2 q - E E g ( u m + i ( y ) - - U m ( y ) )  (3.9) 
m y m y 

For  g ( 0 ) = o %  g ( u ) = 0  for u > 0 ,  this is essentially equivalent to (1.1). 
Physically, g also has an attractive part, Mapped  onto  a dynamical  model  
of interacting Brownian particles, they no longer have pair forces. 
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